Weitere Beispiele werden automatisch zu den Stichwörtern zugeordnet - wir garantieren ihre Korrektheit nicht.
The speed range can be described by the Maxwell-Boltzmann distribution.
The most transparent definition of this standard comes from the Maxwell-Boltzmann distribution.
The second step is to calculate the charge density by means of a Maxwell-Boltzmann distribution.
If you allow the activation energy itself to change with temperature, the Maxwell-Boltzmann distribution of states still holds.
Figure 2 shows the Maxwell-Boltzmann distribution for the speeds of the atoms in four noble gases.
The Maxwell-Boltzmann distribution describes the magnitude of a normal vector in three dimensions.
From the Maxwell-Boltzmann distribution we have for the number of excited atomic species i:
The Maxwell-Boltzmann distribution also requires low density, implying that .
The number of atoms or molecules occupying different excited energy states is determined by the Maxwell-Boltzmann distribution.
This spread is called the Maxwell-Boltzmann distribution.
Figure 3.7 shows graphically the Maxwell-Boltzmann distributions of molecular speeds at two different temperatures.
The Maxwell-Boltzmann distribution of energy does not require that activation energies be temperature-independent.
The Maxwell-Boltzmann distribution is a mathematical function that speaks about how many particles in the container have a certain energy.
If X has a Maxwell-Boltzmann distribution with parameter a, then .
For example, when analysing the behaviour of a gas at room temperature, most phenomena will involve the (classical) Maxwell-Boltzmann distribution.
This equation is derived from kinetic theory of gases using Maxwell-Boltzmann distribution function.
Examples include the Schrödinger wave equation and the Maxwell-Boltzmann distribution law.
If energies of the molecules located near a given point are observed, they will be distributed according to the Maxwell-Boltzmann distribution for a certain temperature.
In a gas with massive particles, the energy of the particles is distributed according to a Maxwell-Boltzmann distribution.
The Maxwell-Boltzmann distribution applies not only to molecular speeds but also to molecular energies.
The Maxwell-Boltzmann distribution of molecular speeds was first verified by Zartmann in 1931.
The Maxwell-Boltzmann distribution for the speed follows immediately from the distribution of the velocity vector, above.
The Maxwell-Boltzmann distribution can also be obtained by considering the gas to be a type of quantum gas.
Vibrational energy relaxation, the process by which molecules in high energy quantum states return to the Maxwell-Boltzmann distribution.
Besides the Maxwell-Boltzmann distribution mentioned above, he also associated the kinetic energy of particles with their degrees of freedom.